Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

نویسندگان

  • Chiara Gabbi
  • Xiaomu Kong
  • Hitoshi Suzuki
  • Hyun-Jin Kim
  • Min Gao
  • Xiao Jia
  • Hideo Ohnishi
  • Yoichi Ueta
  • Margaret Warner
  • Youfei Guan
  • Jan-Åke Gustafsson
چکیده

The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capabi...

متن کامل

Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion.

Transgenic mouse models of defective urinary concentrating ability produced by deletion of various membrane transport or receptor proteins, including aquaporin-2 (AQP2), are associated with neonatal mortality from polyuria. Here, we report an inducible mouse model of AQP2 gene deletion with severe polyuria in adult mice. LoxP sequences were inserted into introns 1 and 2 in the mouse AQP2 gene b...

متن کامل

Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels.

Aquaporin-3 (AQP3) is a water channel expressed at the basolateral plasma membrane of kidney collecting-duct epithelial cells. The mouse AQP3 cDNA was isolated and encodes a 292-amino acid water/glycerol-transporting glycoprotein expressed in kidney, large airways, eye, urinary bladder, skin, and gastrointestinal tract. The mouse AQP3 gene was analyzed, and AQP3 null mice were generated by targ...

متن کامل

A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2.

Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome of inappropriate antidiuresis or congenital X-linked nephrogenic diabetes insipidus. We present a novel mutation...

متن کامل

Normal Fibrinolytic Responses to 1 -Desamino-8-O-Arginine Vasopressin in Patients with Nephrogenic Diabetes insipidus Caused by Mutations in the Aquaporin 2 Gene

Three patients with autosomal-recessive nephrogenic diabetes insipidus (NDI), homozygous for mutations in the aquaporin 2 gene (AQP2), were tested for their fibrinolytic and hemodynamic responses to intravenous adm inistration of l-desamino-8-D-arginine vasopressin (DDAVP). They all showed an increase of tissue-type plasminogen activator antigen, facial flush­ ing, an increase of heart rate and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 8  شماره 

صفحات  -

تاریخ انتشار 2012